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Physics of tides

• Ubiquitous but small:

𝜀 ~10−8

• Computed theoretically
(access to the horizontal 
strain only)

Earth tide:

Snapshot of the tidal areal strain (-) 𝜺𝜽𝜽 +
𝜺𝝋𝝋 computed by the ertid function of 
program SPOTL (Agnew, 2012) on 
February 1st 2024 at midnight.

Time evolution of tidal areal strain over 
Martinique



Physics of tides

• Ubiquitous but small:

𝜀 ~10−8

• Computed theoretically
(access to the horizontal
strain only)

• Well defined frequencies
linked to the 
ephemerides

Earth tide:

Snapshot of the tidal areal strain (-) 𝜺𝜽𝜽 +
𝜺𝝋𝝋 computed by the ertid function of 
program SPOTL (Agnew, 2012) on 
February 1st 2024 at midnight.

Frequency spectrum of tidal areal strain over 
Martinique
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Physics of tides

• 𝑃𝑎𝑡𝑚 ~3 𝑐𝑚𝐻20

• Measured locally

• Similar frequencies (but 
dominance of the solar
influence)

Atmospheric tide:

Time evolution of atmospheric pressure over 
Martinique



Physics of tides

• 𝑃𝑎𝑡𝑚 ~1 𝑐𝑚𝐻20

• Measured locally

• Similar frequencies (but 
dominance of the solar
influence)

Atmospheric tide:

Frequency spectrum of atmospheric pressure 
over Martinique
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Tides in the subsurface
Noting the state variables of an aquifer (𝜎, 𝜀, 𝑝, 𝜁)

𝑝 = −𝐵𝐾𝑢𝜀 &      𝑝 = 𝛾𝑃𝑎𝑡𝑚

With

𝛾: Loading efficiency ቚ
𝛿𝑝

𝛿𝜎𝑧𝑧 ζ=0

𝐾𝑢: undrained bulk modulus (Pa)

𝐵 =
𝛿𝑝

𝛿𝜎|𝜁=0
: Skempton coefficient 

-> it’s not the best formulation as it uses 
𝜁 = 𝑆𝜀𝑝 + 𝑆𝜀 ⋅ 𝐵𝐾𝑢𝜀



Tides in the subsurface
We link the state variables of an aquifer (𝜎, 𝜀, 𝑝, 𝜁) in 

a constitutive equation: 

𝜁 = 𝑆ℎ𝑝 + 𝑆ℎ ⋅ 𝟐𝑮𝜸𝜀ℎ

With

𝑆ℎ : Uniaxial storage coef.   𝑆ℎ =
𝛿𝜁

𝛿𝑝|𝜀ℎ=0,𝜎𝑧𝑧=0
(-)

𝐺: Shear modulus (Pa)

𝛾: Loading efficiency ቚ
𝛿𝑝

𝛿𝜎𝑧𝑧 ζ=0



Response of a borehole:

9

We do not measure pore pressure but 

borehole piezometric head: 

→ Attenuation and phase lag

Δ𝜑 = −45°



Response of a borehole:
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Borehole storage effect (Hsieh, 1988)

phase lag is mostly sensitive to aquifer

transmissivity



Response of a borehole:
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Borehole storage effect (Hsieh, 1988)

Amplitudes give you access to both

𝛾 & 2𝛾𝐺

-> measurment of the shear modulus evolution

over time



Application in Martinique
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The Galion borehole
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Practically:

- Piezometric level

at an hourly

sampling rate

Input data
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M7.4 – 2007                            M6.5 – 2014   M5.6 – 2017      M7.3 – 2018/08/21 

M5.4 – 2018/09/28



Practically: 

We are interested in 

the tidal oscillations 

around 1 & 2 cycles 

per day

Input data
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The tidal analysis workflow: 

Band-pass filtering & Harmonic least square fitting to compute phase lags & amplitude ratios

Data processing:
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Transfer functions
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1 data point: 

30 days - window of 

data analysis



Conceptual model
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3 layers

4 « free » parameters

4 calibrated parameters

(Pumping test & Seismic

survey) 

𝑇 Transmissivity 

𝐾′ Hydraulic conductivity

𝑆, 𝑆′ Storativities

𝛾, 𝛾′ Loading efficiencies

𝐺, 𝐺′ Shear moduli



Model inversion and validation
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Aquifer Transmissivity and Shear modulus

Shear modulus range 

validated with the 

seismic survey

(G < 2GPa!) 
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Co-seismic changes

• Peak shear stress amplitude are the best predictors of 

transmissivity and shear modulus variations

• The main hypothesis found in the literature to explain 

Transmissivity variations (clogging & unclogging of 

fractures) is not sufficient to explain Shear modulus 

variations

• Micromechanical models suggests that there was a crack 

density variation (re-opening of closed fracture) up to 60% 

in 2014
Numerical simulation of the 

seimic dynamic stresses at the 

borehole



Reversible changes controlled by hydraulic head
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These reversible changes seem to be

controlled by piezometric level

𝜎

𝜎

𝑝

The effective stress 𝝈∗ = 𝜎 − 𝛼𝑝
controls the opening of fractures

ℎ ∝ 𝑝 → 𝜎∗ → 𝑤 → 𝑇

𝜎 𝜎

At the Galion borehole
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𝜎∗ = 𝜎 − 𝛼𝑝

Walsh (1987) for a single fracture:

𝑇

𝑇0

1
3

= 1 −
2ℎ

𝑎0
ln

𝜎∗

𝜎0
∗

Transmissivity vs effective stress:

Reversible changes controlled by hydraulic head
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Reversible changes controlled by effective pressure

B. Vittecoq, A. Burtin, and J. Fortin

Same site, different method

Relative seismic velocity
𝛿𝑣

𝑣
∝

𝛿𝐺

𝐺

Good correlation between water 

level and seismic velocity until a 

threshold is reached (crack 

closure?)
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Reversible changes controlled by effective pressure
Another site in Martinique: Grande Anse

Large piezometric 

variations
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Reversible changes controlled by effective pressure
Another site in Martinique: Grande Anse

Same workflow

Amplitude ratios between earth tidal strain (red) or atmospheric

pressure (green) and piezometric level at the bi-diurnal frequencies.

Phase lags earth tidal strain (red) or

atmospheric pressure (green) and piezometric

level at the bi-diurnal frequencies. No clear

correlation with piezometric level is noticeable.



26

Reversible changes controlled by effective pressure

Post 2014-

earthquake outliers

Results of model inversion in terms of aquifer transmissivity 𝑻, as a function of time (left) or piezometric

level (right). Error bars correspond to the propagation of a 1° error on phase lag. Dot colors refer to the

time of measurement.

Transmissivity
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Reversible changes controlled by effective pressure

Results of model inversion of Grande Anse aquifer shear modulus as a function of time (left) or piezometric

level (right). Dot colors refer to the time of measurement.

Shear modulus



Conclusions
• Thanks to an adapted theoretical

framework & analytical models we
demonstrated and validated tidal analysis
potential to yield transmissivity and shear
modulus time series

• Significant variations of hydrodynamic
parameters were identified and validated
with pumping tests

• The variations highlight the high sensitivity
of shallow fractured aquifer to stresses
(poromechanical or seismogenic), which vary
depending on sites, probably beacause of
different degrees of fracturation 28



Perspectives:
- Despite regular assertions of the potential of tidal analysis in the literature & the extensive 

availability of tidally influenced piezometric data, it has never been systematized to larger 
databases

- Depending on the wells, tidal analysis can yield aquifer transmissivity, elastic moduli, 
information about aquifer vulnerability, constrains on pumping tests inversions,… 
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Map of the localization of the piezometers 
influenced by tidal signals at the 4 main 
frequencies in metropolitan France 

All types of lithology & contexts (limestone/ 
granite/sand;  confined/unconfined; coastal/ 
continental/mountain catchments)



Read more: 



Appendix



Ocean tide?



Seismic refraction profiles

Refraction seismic profiles (𝑽𝒑) around: A the Galion borehole, B the Grande Anse borehole. Well location and depth are represented by thin

dark blue rectangles. The studied aquifers are located: between -20 and -50m at the Galion and -14 and -25.5m at Grande Anse.

2300m/s -> 12GPa

3000m/s -> 20 GPa


